
Whitepaper

Building the Internet of Things and How Qt
Can Help

3Building the Internet of Things and How Qt Can Help | The Qt Company © All rights reserved

Contents

Building the Internet of Things and How Qt Can Help .
IoT’s Software Requirements .
IoT Challenges .
Embedded Development .
Big Data .
Consumer Experience .
Extensibility .
Summary .

4
5
7
8
9

10
11
13

4 Building the Internet of Things and How Qt Can Help | The Qt Company © All rights reserved

Building the Internet of Things and
How Qt Can Help

The term, Internet of Things (or IoT), is everywhere.
For people wanting to impress others, it’s the latest
buzzword to include in a conversation in order to
be seen as relevant. For science fiction romantics,
it’s an image of dust-sized computers implanted
everywhere in everyday objects. For most developers
though, the Internet of Things is just a newer, more
fashionable term for the old industry workhorse: the
connected embedded system. After all, haven’t we
been building IoT-like devices for decades? Yes and no.

Central to most definitions of IoT devices is the fact
that they are embedded systems that are often (but
not always) mobile and use M2M — in other words,
wandering gadgets communicating machine-to-
machine. Of course, these attributes already apply
to a large number of embedded devices. However,
the IoT promise is that always-on communication
will give these devices the information they need to

act smarter. This step of imbuing every-day objects
with rudimentary intelligence and communication
skills gives us a wide array of technological aides:
sensor-studded biometric clothing, self-scheduling
shipping drones, auto-monitoring homes, freshness-
reporting groceries, automatic parking meters, self-
diagnosing agricultural crops — the list goes on.

Realizing this vision of IoT requires computers to
continue becoming smaller, smarter, and more
connected. While everyone seems to understand
this requires a hardware transformation, few
people are talking about the significant change
that’s required in software. Adding intelligence to
everyday objects while ensuring both human-to-
machine (H2M) and M2M conversations are more
intuitive and natural requires complex software,
and lots of it. This in turn, places a number of
requirements on how to develop IoT software.

5Building the Internet of Things and How Qt Can Help | The Qt Company © All rights reserved

IoT’s Software Requirements

Because there are so many technologies
that could be applied to creating intelligent,
connected systems, it can be tough to know
where to begin. Let’s start by figuring out what
constitutes an ideal software framework — or
at least what are the basic requirements.

 1) Powerful

We can’t fake smarts without some
computational horsepower. We need a
software toolkit that is up to the task.

 2) Optimal

Shrinking processors and boards won’t give us
the luxury of boundless resources. We need
something that is powerful but efficient.

 3) Connected

We’ll be handling all kinds of communication so we
need flexible connectivity options to let us either
push smarts from the network’s edge into the cloud,
get data from a sensor net, or anything between.
Our chosen tools need to easily support a host of
protocols, stacks, and wireless technologies.

 4) Rapid Development

To fail fast, evolve our products, and support IoT’s
quick lifecycle churn, we need to develop software
quickly and reliably. Development should be as
simple as possible with modern tools and IDEs.

 5) Cross-platform

We’ll want to share our codebase across as
many devices as possible from desktop to
cloud server, and from headless sensor to
embedded UX. Picking a development tool

that minimizes porting effort is essential.

 6) User Interface

Of course, many IoT devices won’t need a UX.
However plenty of connected gadgets will. Splitting
the development toolchain along a headless versus
headed capability isn’t ideal; if we can find something
that works well for all situations that would be best.

 7) Sharing

We don’t want to reinvent the wheel. We
want an open, active, and global development
community with others to learn from.

 8) Secure

Hackers are everywhere: our devices need to
be tamper-proof and resilient to hacking.

 9) Reliable

We can’t have a host of new “smart” devices around
us that function erratically or continually need reboots:
they have to be reliable. While any language and tool
should be able to create reliable software, we’ll look
at the ease of external validation or certification as
our measure. That may not apply everywhere but
there will be IoT industries where this matters.

 10) Stable

Finally, we know that software continues to change
— the model where device functionality is completely
fixed at the time it leaves the factory is becoming
obsolete. Therefore, we’ll not only want a way to
update software in the field but we’ll want to make
sure that the software tools we used to build our
devices stays stable, even as those tools are refreshed.

6 Building the Internet of Things and How Qt Can Help | The Qt Company © All rights reserved

Now that we’ve narrowed our parameters, let’s take a look at today’s popular embedded
languages with an assortment of frameworks to see how they stack up.

Powerful

Optimal

Connected

Rapid
development

Cross-platform

User interface

Sharing

Secure

Reliable

Stable

C C++/STL C++/Boost C++/Qt C#/.NET Java/
Android

HTML5/
Cordova

C
C may have lost its crown for development
on desktops but it’s still quite relevant in the
embedded world. However, C’s biggest problem
is that the frontier has moved elsewhere:
developments with IDEs, RAD, frameworks, and
communities are pretty quiet in the C world.

 Score: 4/10

HTML5/Cordova
HTML5 (or JavaScript + HTML + CSS) under Apache
Cordova — while ranking great on many of the cross-
platform and development options — is far too big
and suboptimal for most IoT systems. Not to mention
that most HTML5 frameworks are frequently in flux
— great for continually picking up new features but
not at all great if you’re trying to build a stable code
base that will be maintained with future updates.

 Score: 5/10

C#/.NET
C# and .NET does well in a number of ways but
isn’t quite as efficient, compact, or optimized
as C++. Despite Mono, it also has a hard time
claiming cross-platform compatibility. The
community is active but perhaps not quite
as fervent as the open source options.

 Score: 6/10

Java/Android
Android is quite capable but requires a rather
heavyweight environment. However, where it
really fails is in cross platform. Android apps run
on Android and nothing else, which limits where
you’ll be able to take your code afterwards.

Score: 6/10

7Building the Internet of Things and How Qt Can Help | The Qt Company © All rights reserved

C++/STL
Certainly C++ does well for being both powerful
and optimal — it’s still the champion of embedded
languages for a reason. Augmenting C++ with STL
increases its expressiveness but doesn’t really help
much with connectivity. We could pull in various
SOCKS, Bluetooth, or Wifi libraries but that defeats the
point of having a one-size-fits-all solution. C++/STL
also isn’t great for a rapid development or UX creation.

Score: 7/10

C++/Boost
Sticking with C++ but replacing STL with Boost gives
us better connectivity options but Boost is still just
a library and still lacking when it comes to developer
environment. Plus there’s no standard UX tooling.

 Score: 8/10

C++/Qt
Finally, what about C++ and Qt? Well, Qt can leverage
the best of the C++ “bare metal” capability while fully
fleshing out rapid application development and UX
components. The UX pieces are designed for cross
platform and, because there’s a complete IDE and
community, it also does well in those categories.

 Score: 10/10

IoT Challenges

Qt came out on top in our comparison and
for good reasons. However, it’s not just how
small the code or how many developers in
the ecosystem that decides what IoT toolkit
is best, it’s how quickly and effectively you
can use it. Let’s dive into some IoT challenges
in more depth and see how Qt tackles them.

8 Building the Internet of Things and How Qt Can Help | The Qt Company © All rights reserved

Embedded Development

Much embedded development is still stuck in the
stone ages. Going from a modern repository-plugged,
auto-completing, syntax-colouring, integrated-
debugging, plug-in-hosting, cloud-connected IDE to
a green blinking cursor on a black screen feels like
trading in the auto-start on your Tesla for the crank
on your great-grandfather’s Model-T. Sure, terminal
sessions, console scripts, and vi/emacs have their
place but we’ve had GUIs for what, 33 years now?

Qt has a huge advantage here. Qt Creator IDE works
on all platforms, supports all kinds of extensions,
plug-ins, short cuts, and time savers, and it cross-
compiles to the target of your choice. It also includes
tools for debugging, profiling, analyzing, and designing
your code. Because all supported environments are
compatible, you can do rapid prototyping on your
laptop and push builds to your embedded target
after you’re happy with the results. If you think Qt

is only about building a UX, it’s not — there are
plenty of Qt libraries for internationalization, strings,
threads, XML, and JSON parsing, databases, sockets,
Bluetooth, sensors, NFC, event management,
and more for headless IoT development.

Most developers today don’t have the luxury of
working on a single, isolated product that doesn’t
share code with other devices. This is why having
an embedded tool that has a powerful UX capability
is really important for several reasons: to support
multiple devices with or without screens, to leverage
your core communication libraries between a
desktop interface and a mobile gadget, and to share
code with other IoT developers building different
parts of the ecosystem. Qt lets you build a code
base for non-UX devices that’s lean and trim on
which you can then layer a highly sophisticated
interface for desktop, mobile, and tablets.

Qt Quick Designer in Qt Creator IDE enables you do create visual prototypes of user interfaces with easy-to-use drag and
drop features.

9Building the Internet of Things and How Qt Can Help | The Qt Company © All rights reserved

Big Data

Not only is big data a buzzword on par with IoT but
it’s also crucial to the IoT vision: the continual data
collected by millions of devices helps give our brave
new world some brains. You’d be forgiven for thinking
that big data is strictly a concern for the cloud. In
actuality, endpoints need to manage big data too but
on a different scale. Your IoT embedded system may
not deal with exabytes but it still may need to collect,
store, sort, filter, and process gigabytes of data.

To handle that workload, you need memory-
conserving data manipulation, efficient format
conversion, and persistent data storage. In C++, the
programmer has direct control over data storage
formats so there’s no need for extraneous metadata
or garbage collection. So being memory conscious
is something that C++ is very good at and any of
the C++ based options will do, including Qt. But
converting between formats is needed to send and
receive MQTT, JSON, or raw binary data to and from
sensors in the most battery-sipping way possible —
something not all options can do. Qt, however, has
the libraries and the raw speed to handle this simply.

APIs for writing to databases are also necessary
for the tidbits that have to be stored or referenced.
Qt provides interfaces to SQL — like MySQL,
Postgres, or SQLite — to let you easily save
and process the data that’s being collected.

There is one more aspect of big data to
consider: data visualization. Although rarely
needed by the end user, data visualization is
critical for data scientists to see and interpret
the data sets being generated. Qt provides a
module specifically for visualization, providing
2D and 3D charts with a huge number of
ways to slice, dice, and view your data.

10 Building the Internet of Things and How Qt Can Help | The Qt Company © All rights reserved

Consumer Experience

Your IoT devices are not standalone. While some
IoT devices may have large, fully dot-addressable
graphics with touch screens (home control panels,
for instance) those are the minority. Users need to
have a way to communicate with their devices, to
configure device behavior, download data, or view
and change status. The fully realized UX requirements
of most IoT devices transcend a simple blinking
LED and one-button interface. Since human and
device interaction is a crucial part of the consumer
experience, it’s also very important to the success of
IoT. And most IoT devices can only interface with us
indirectly through a desktop, mobile, or tablet UI.

Qt was designed for creating user interfaces from
its very beginning and this innate capability is
needed in IoT. With Qt, you can build UIs that are
simple or complex, classic or modern, standardized
or custom. But most importantly, everything you
build with Qt is cross platform. Whether your user
is a Microsoft adherent, an Apple fanatic, or a Linux
diehard, your IoT interface will run on all desktops.
The same goes for the iPhone/Android schism.

Supporting only one of those platforms is a recipe
for dissatisfied customers; nobody likes to be left
in the cold — not to mention those 7 to 8 percent
of people with smartphones running something
else like Windows, Tizen or BlackBerry. Qt gives
you a way to simply support all your customers,
regardless of their operating system or mobile
phone partisanship, through a single codebase.

Speaking of a single codebase, the other big benefit
of Qt is software sharing between your embedded
device’s firmware and the apps used to control it.
In the bad old days, the languages and databases
for RAD development forced you to build your
desktop in something like VB or Delphi, while the
embedded side was typically only in C. That meant
you had two instantiations of the same code—in
two languages, using two APIs, needing two test
suites— which provided two distinctly different ways
to hide bugs. With Qt, you’ll be designing, building,
and testing one data-parsing module, configuration
management library, or protocol stack that’s
shared among all the places your software runs.

11Building the Internet of Things and How Qt Can Help | The Qt Company © All rights reserved

Extensibility

No developer team can afford to rewrite software for
every new product. Not only is it costly but it greatly
reduces the speed of new product creation. So why
do we always seem to need to scrap software every
couple of years and start over? Redesigns are often
necessary due to unforeseen requirement changes
and, more devastatingly, because of insufficient
foresight while architecting a product. But worst
of all, rewrites are necessary due to hitting a dead-
end in a hardware or software dependency that
your system critically relies on and that doesn’t
align with where you need to go — a product end-
of-life or roadmap stagnation, for example.

There is no silver bullet for future proofing regardless
of the language or framework you pick. You’ll
have to use your experience to architect for the
future by building software that can be readily
extended, modified, and adapted. There are a
couple of ways that Qt can help to ensure your
product is adaptable to changing circumstances.

 New Embedded Hardware

You can pretty much guarantee that Qt will
be among the first frameworks ported to any
new board given its large open development
community and embedded popularity. As your
hardware needs change and grow, you won’t need
to worry about doing those ports yourself.

 New App Environments

As different smartphones, UX paradigms, or Linux
distros come into fashion, you’ll have a strong
Qt community keeping your framework relevant,
creating new platforms for your device to interface
with its users. Qt is an early porting option because
it has such strong cross-platform support.

 New Sensors

The Qt Sensor API has dozens of existing sensor
types — if your new sensor is in one of these
predefined classes, you can take advantage of this
abstraction layer by creating a simple plug-in.

 New Protocols

Qt has a number of networking and connectivity
classes that make it easy to use existing socket
communication over new wireless technologies. New
protocols will most certainly require new classes to
implement them but at least they can take advantage
of many existing classes to make that job a bit easier.

 New Backend Connections

You’re likely going to need access to cloud
services in your IoT UX. Qt has RESTful and
SOAP interfaces, XML and JSON parsing, and
cloud APIs for accessing AWS and Azure, with
more development happening all the time.

 Support for Plug-ins

If you need an IoT architecture that can dynamically
add functionality, you can consider adding plug-ins.
With plug-ins, you (or a developer community) can
provide your product with new, refreshed features
without having to rewrite the base code. Qt has a
standard array of plug-ins for the features it provides
but, more importantly for IoT developers, it also
provides the base plug-in architecture that allows
you to easily invent and create plug-in abstractions
that fit your own particular needs. If you don’t need
a modular interface as sophisticated as a plug-in,
there are a huge number of libraries from third
parties that can be used with Qt: not only any C/
C++ library, but many Qt-specific ones as well.

http://doc.qt.io/qt-5/qtsensors-index.html
http://doc.qt.io/qt-5/topics-network-connectivity.html

12 Building the Internet of Things and How Qt Can Help | The Qt Company © All rights reserved

Incorporating existing modularity into your system
(be it Qt or any other framework) starts from the
beginning. But the process you use can assist as well.
For example, Agile development may be well suited
for building extensible systems because it follows a
model that essentially extends the system after every
scrum. Regardless of the development process you
follow, writing things modularly with abstractions that
can be easily unit tested, writing for the least coupling
between layers, and isolating your dependencies
into as few touch points as possible will go a long
way to keeping your IoT software alive and flexible.

But having all the tools in the world for
extensibility won’t help you unless you use them.

13Building the Internet of Things and How Qt Can Help | The Qt Company © All rights reserved

Summary

More than ever, the world of IoT depends on software
to make smarter, more connected devices. The criteria
for your software framework may or may not match
those we’ve defined in this paper. However, if your
project needs to be powerful, optimal, connected,
rapidly developed, and cross-platform with user
interfaces and sharing capabilities, then you may
want to consider Qt. Moreover, keep in mind that
it’s not just these basic attributes that will drive

your software decisions. Most IoT software can
benefit from other Qt attributes like the ease of
embedded development, smooth handling of big
data, a positive consumer experience, and assurance
that your software architecture won’t stagnate.
But, regardless of what your IoT software needs
to do, remember that you’re building a framework
that will live for a long time — choose carefully.

About Qt

Used by over 1,000,000 developers worldwide, Qt is a full framework that enables the development
of powerful, interactive and platform-independent applications. Qt applications run native on desktop,
embedded and mobile host systems, enabling them to deliver performance that is far superior to
other cross-platform application development frameworks. Qt’s support for multiple platforms and
operating systems allows developers to save significant time related to porting to other devices.
Qt is created by developers for developers where making developers’ lives easier is top priority. It provides an
incomparable developer experience with the tools necessary to create amazing user experiences. Qt is platform
agnostic and believes in making sure that all developers are able to target multiple platforms with one framework
by simply reusing code. Qt gives freedom to the developer. Code less. Create more. Deploy everywhere.

About The Qt Company

The Qt Company is responsible for all Qt activities including product development, commercial and open
source licensing together with the Qt Project under the open governance model. Together with our
licensing, support and services capabilities, we operate with the mission to work closely with developers
to ensure that their Qt projects are deployed on time, within budget and with a competitive advantage.
The Qt Company’s goal is to provide desktop, embedded and mobile developers and companies with
the most powerful cross- platform UI and application framework. Together with its licensing, support
and services capabilities, The Qt Company operates with the mission to work closely with developers
to ensure that the projects are deployed on time, within budget and with a competitive advantage.

www.qt.io
Office locations: China | Finland | Germany | Norway | Russia
 South Korea | Taiwan | United States

