
Qt 6.0
Lars Knoll, Qt Chief Architect, The Qt Company
Tuukka Turunen, SVP R&D, The Qt Company

Wednesday 20th January

Qt 6 Timeline

20 January 2021 © The Qt Company3

Qt 6 Development Timeline

Research. Setting the initial vision and
scope of Qt 6.
Planning the right timing for next major
version and evolution of Qt 5.x to match
user needs.

2017

Research and development of key
concepts (e.g. Graphics 2020),
timeline for development and releasing
at the end of 2020 set.

2018

Development of graphics, build
system, C++17, new QML, and other
key changes.
Using Qt 5.x to provide a preview as
much as possible.

2019

Main year of Qt 6.0 development.
Requirements of Qt 6.0 finalized and
initial scope for Qt 6.1 and 6.2 set.
Qt 6.0.0 release in December

2020

Release the first feature release Qt
6.1 and the first long-term supported
Qt 6.2 LTS.
More add-ons and platforms.

2021

Package Manager – Additional Libraries for Qt 6

Qt 6.x

Qt essentials +
“essential add-ons”

 Qt Core
 Qt Gui
 Qt Network
 Qt Widgets
 Qt QML
 Qt Quick
 Qt Quick 3D
 Qt Quick

Controls
 Qt Print

Support
 Qt Wayland +

Compositor
 etc etc

Package Manager

Qt user

Supported
Qt add-ons

Other
libraries

from external
repositories

Upcoming
Qt add-ons

Other
libraries from

The Qt
Company

20 January 2021 © The Qt Company4

› Qt Concurrent
› Qt Core
› Qt Core Compat
› Qt D-Bus
› Qt GUI
› Qt Help
› Qt Network
› Qt OpenGL
› Qt Print Support
› Qt QML
› Qt Quick
› Qt Quick 3D
› Qt Quick Controls
› Qt Quick Layouts
› Qt Quick Timeline
› Qt Quick Widgets

Supported Essential and Add-on Modules in Qt 6

› Qt Bluetooth
› Qt Multimedia
› Qt NFC
› Qt Positioning
› Qt Quick Dialogs: Folder,

Message Box
› Qt Remote Objects
› Qt Sensors
› Qt SerialBus
› Qt SerialPort
› Qt WebChannel
› Qt WebEngine
› Qt WebSockets
› Qt WebView

› Active Qt
› Qt Charts
› Qt Data Visualization
› Qt Lottie Animation
› Qt Quick Dialogs

(File dialog)
› Qt ScXML
› Qt Virtual Keyboard

› Qt Shader Tools
› Qt SQL
› Qt SVG
› Qt Test
› Qt UI Tools
› Qt Wayland
› Qt Wayland Compositor
› Qt Widgets
› Qt XML
› Qt 3D
› Qt Image Formats
› Qt Network Authorization
› M2M package: Qt CoAP
› M2M package: Qt MQTT
› M2M package: Qt OpcUA

Qt 6.0 (released) Qt 6.1 (planned) Qt 6.2 (planned)

20 January 2021 © The Qt Company5

Designer Tools

Unified 2D and 3D Design Tool
QT DESIGN STUDIO 2.0

› Create 3D UI’s with Qt Quick 3D in
addition to traditional 2D UI design

› Import designs from favorite 2D and 3D tools
› Visual 3D editor to work with the scenes
› Define keyframe-based timeline animations
› Assign 3D effects

› Mix 2D and 3D content seamlessly inside
your application Import

20 January 2021 © The Qt Company7

Cross Product-line
Development

QT DESIGN STUDIO 2.0

Cortex-M4 MCU (<10 EUR BOM) – 640x480

ARMv7A 32bitlow end MPU (<30 EUR BOM) – 854x480

ARM-v8A 64bit Quad Core high end MPU (<100 EUR BOM) – 960x480

Low-end

Mid-range

High-end

Companion app

 Higher resolution
 2.5D Graphics
 Full Qt Framework
 Advanced animations
 Linux or RTOS

 Qt for MCUs
 Smartphone-like UX
 Basic animations
 Bare metal or

freeRTOS

 Complex/
simple apps

 Win, Mac,
Linux,
Android,
iOS

 WEBASM

 Highest
resolution

 Dual screen
support

 2D/3D
Graphics

 Full Qt
Framework

 Linux or
RTOS

20 January 2021 © The Qt Company8

Developer Tools

Developer Tooling Fully Supporting Qt 6
QT CREATOR 4.14

› Wizards generate Qt 6 compliant projects

› Inspect Qt 6 types in the debugger

› Editor knows the new QML and C++
language features

› Access Qt 6 documentation and
examples

20 January 2021 © The Qt Company10

Constantly Improving CMake Support
QT CREATOR 4.14

› Improved kit detection when importing
builds

› Allow to re-use existing build directory

› Out-of-the box support for
QML debugging and profiling

› Applications can still use qmake, if
desired

20 January 2021 © The Qt Company11

New Tools for C++ Development
QT CREATOR 4.14

› New and improved refactoring operations

› Clang code model to Clang 11

› Tighter integration of Clazy and Clang-
Tidy

› Multiple improvements to C++
development throughout

20 January 2021 © The Qt Company12

Qt 6

Goals

> Fix architectural limitations in Qt 5
> Improved performance
> House cleaning
> Package management support
> Smaller and modular core product
> Compatibility with Qt 5

20 January 2021 © The Qt Company14

Core Values

> Cross platform
> Maintainability and compatibility
> Scalable
> Intuitive and easy to use
> Documentation
> Tooling

20 January 2021 © The Qt Company15

Focus on cleaning up our
code base and architecture,
not on new features

20 January 2021 © The Qt Company16

Compatibility

> Mostly source compatible with Qt 5
> Some porting required

• Requires some changes to source code
• Requires a recompile
• Deprecated functionality has been removed

> Those changes prepare us for the years to come

20 January 2021 © The Qt Company17

What’s new in 6.0?

Require C++17

› Require a C++17 compliant compiler
› Use features available in C++17

› Structured bindings
› if constexpr ()
› Template argument deduction rules
› New std library features
› …

20 January 2021 © The Qt Company19

Containers

> Closed API gaps towards STL containers
• Consistent support for move operations
• Emplace
• initializer_list

> Removed 2G size limitation
• qsizetype

> Default constructors constexpr and non allocating

20 January 2021 © The Qt Company20

QList and QVector

> Only one class
• QVector is an alias to QList

> Simplifies our API
> Removed performance issues in Qt5 QList

• vector-based data structure
• Improves performance in almost all cases

> Almost 100% source compatible
• Exception: References to stored items not stable under
modification

20 January 2021 © The Qt Company21

QMap and QHash

> Separated QHash/QMap and QMultiHash/QMultiMap
• Don’t inherit from each other anymore

> Q(Multi)Map implemented on top of std::(multi_)map
• Move support from/to std::map
• Implicitly shared

> New QHash implementation
• Open Adressing
• Fast
• Low memory usage

20 January 2021 © The Qt Company22

Performance: Hash<int64_t, int64_t>

0

2

4

6

8

10

12

1000 10000 100000 1000000 10000000

Benchmark results (lower is better)

QHash (Qt 6) QHash (Qt 5) std::unordered_map tsl::sparse_map

0

20

40

60

80

100

120

10000 100000 1000000 10000000

Memory usage (bytes/entry)

QHash (Qt 6) QHash (Qt 5) std::unordered_map tsl::sparse_map

Measurements done using
https://github.com/Tessil/hash-table-shootout.git20 January 2021 © The Qt Company23

> All text handling Unicode based
• UTF-16 the default string encoding
• UTF-8 the default storage format

> Source code is UTF-8
> Clean up string related classes

• Consistent set
• QUtf8StringView

> Move legacy encoding support out of Qt Core

Unicode & String classes

20 January 2021 © The Qt Company24

String classes

> QByteArray
• ASCII only, not Latin1
• Meant for storing binary data

> QUtf8StringView class
• Wrapper to tag UTF-8 specific data

> Completed QStringView API
• Supports the const methods of QString

> Removed QStringRef
• Still available in Qt5 compatibility library

20 January 2021 © The Qt Company25

Regular expressions

> Qt 6 uses QRegularExpression everywhere
• Only one regular expression engine
• Based on PCRE2

> QRegExp has been removed
• Porting to QRegularExpression usually straightforward
• Still available in Qt5 compatibility library

20 January 2021 © The Qt Company26

Text conversions

> New QStringEncoder/Decoder API
• Value based, stateful
• Supports UTF-8, UTF-16, UTF32, Latin1 and Local 8 bit
• Extensible to support full code conversions after Qt 6.0

> QTextCodec has been removed
• Still available in Qt5 compatibility library

20 January 2021 © The Qt Company27

Properties and bindings

import QtQuick 2.15

Rectangle {
property int width
property int height: width
property int border: height/10

}

20 January 2021 © The Qt Company29

Goals

> Bring the best part of QML to all of Qt
> Move binding infrastructure into Qt Core

• Extend existing properties in QObjects with support for bindings
• Add binding support to any other class

> Support lazy binding evaluation
• Mark bindings as dirty when dependency changes
• Only re-evaluate when value is required

> Make it fast

20 January 2021 © The Qt Company30

struct Rectangle {
QProperty<int> width;
QProperty<int> height;
QProperty<int> border;

Rectangle() {
height.setBinding(Qt::makePropertyBinding(width));
border.setBinding([this]() {

return this->height / 10;
}

}
};

20 January 2021 © The Qt Company31

template <typename T> class QProperty {
std::function<T()> binding = nullptr;
T data;

public:
T value() const {

if (binding) return binding();
return data;

}
void setValue(const T &newValue) {

if (binding) binding = nullptr;
data = newValue;

}
void setBinding(std::function<T> b) { binding = b; }

};

20 January 2021 © The Qt Company32

template <typename T>
class QProperty {

T val;
QPropertyBindingData d;

public:
T value() const {

if (d.hasBinding()) d.evaluateIfDirty(this);
d.registerWithCurrenlyEvaluatingBinding();
return this->val;

}
void setValue(const T &t) {

d.removeBinding();
if (this->val == t) return;
this->val = t;
notify();

}
}; 20 January 2021 © The Qt Company33

QObject complicates the picture

> Existing property infrastructure
• Avoid breaking compatibility with Qt 5
• Extend the existing property()/setProperty() mechanism

> Data hiding
• Data lives in QObjectPrivate

> Avoid overhead if bindings aren’t used

20 January 2021 © The Qt Company34

Solution

> Binding support a simple addition to the existing system
> Add a getter for a binding interface

• QBindable<PropertyType> bindableProperty();
> Extend Q_PROPERTY with a BINDABLE tag

• Tells moc about the binding interface
> Use Q_OBJECT_BINDABLE_PROPERTY to implement the data storage

• Only works as a member of a QObject
> Low overhead if bindings aren’t used

• One additional pointer in QObjectPrivate

20 January 2021 © The Qt Company35

class MyObject : public QObject {
Q_PROPERTY(int x GET x SET setX BINDABLE bindableX)
Q_OBJECT_BINDABLE_PROPERTY(MyObject, int, xData)

public:
int x() { return xData; }
void setX(int x) { xData = x; }
QBindable<int> bindableX() { return &xData; }

};

myObject->bindableX().setBinding([otherObject]() {
return otherObject->x() + otherObject->width();

}

20 January 2021 © The Qt Company36

QMetatype and QVariant

> Common backend for QMetaType and QVariant
• QMetaType can finally handle all types

> High performance, fast code paths
• QMetaType contains one pointer to a handler struct
• Automatic registration
• Automatic support for comparisons and QDataStream

> Deprecated integer-based type id
• Use QMetaType directly

20 January 2021 © The Qt Company37

struct QMetaTypeInterface {
uint size, alignment;
const char *name;
ConstructFn construct;
DestructFn destruct;
EqualsFn equals;
...

};

class QMetaType {
QMetaTypeInterface *iface;

public:
const char *name() const { return iface->name; }
void construct(void *where) { iface->construct(where); }

};

20 January 2021 © The Qt Company38

Improvements to moc

> Store and resolve required metatype information at compile time
• No more string lookups for type information
• Faster and more efficient runtime resolution of methods

> Added support for bindable properties
• Dynamically add and remove bindings

20 January 2021 © The Qt Company39

Rewritten Concurrent

> Simple chaining of computations
• QFuture::then()

> Attach failure and cancellation handlers
• QFuture::connect()

> Convert signals to QFuture objects
> Added a QPromise class
> Support for custom thread pools

20 January 2021 © The Qt Company40

QByteArray download(const QUrl &url);
QImage loadImage(const QByteArray &data);
void show(const QImage &image);

auto future = QtConcurrent::run(download, url)
.then(loadImage)
.then(show)
.onFailed([](QNetworkReply::NetworkError) {

// handle network errors
});

20 January 2021 © The Qt Company41

Further improvements

> Multiple improvements in Qt Network
• SSL/TLS improvements
• HTTP/2 support by default
• Write your own plugins for QNetworkAccesManager

> Added Qt5Compat module
• Ease porting to Qt 6
• Contains some deprecated classes from Qt 5

20 January 2021 © The Qt Company42

Unified Pointer events

> Unified handling of mouse, touch and tablet events
• One common base class: QPointerEvent
• Specializations for mouse, touch and tablet events
• Common data
• Tracking of input device and history of event points

> Resolves recurring issues with touch handling in complex controls
• e.g. touch enabled controls inside Flickable

20 January 2021 © The Qt Company43

Graphics

Graphics Architecture

OpenGL
(ES) Vulkan Metal Direct 3D 11Platform API

RHI

Qt Shader
Tools

Qt Quick Scene GraphQt Frameworks

Qt Quick (2D + 3D)

Qt Design StudioQt Tools Qt Creator

20 January 2021 © The Qt Company45

Rendering Hardware Interface

> Abstraction layer for 3D graphics APIs
• OpenGL, Metal, Direct 3D 11, Vulkan

> Abstracts graphical objects
• Materials, Meshes, Shaders, etc.
• Internal API tuned towards the needs of Qt

> Integrated with Qt Platform and Window system abstraction layers
> Qt Quick and Qt Quick 3D are fully ported to RHI

20 January 2021 © The Qt Company46

Qt Shader Tools

> Support for cross platform shaders
• Write shader once
• Recompile to all graphics APIs

> Support for build time and runtime shader compilation
• Dynamically generate shaders at runtime
• Bake the shaders offline

20 January 2021 © The Qt Company47

Qt 6 uses the native graphics API of
each operating system

> Efficiently combine 2D and 3D in one scene
• One optimized scene graph

> Enhanced PBR support
• Materials look like they are designed

> Greatly improved support for GlTF2
• Support base spec
• Most of the common extensions

Quick 3D

20 January 2021 © The Qt Company49

Native look and feel for
Qt Quick Controls on
macOS, Windows and
Linux

Desktop style for Quick
Controls

20 January 2021 © The Qt Company50

Native look and feel for
Qt Quick Controls on
macOS, Windows and
Linux

Desktop style for Quick
Controls

20 January 2021 © The Qt Company51

CMake

Supported platforms
> Host platforms

• Windows 10
• macOS 10.15 and 11.0
• Linux (Ubuntu 20.04, CentOS 8.1, SLES 15, OpenSUSE 15.1)

> Target platforms
• All host platforms
• Yocto 3.1 Dunfell
• iOS 13/14
• Android (28 built-time, 21 run-time)

20 January 2021 © The Qt Company53

Roadmap for other platforms
> macOS on ARM

• Timing not yet confirmed
> Yocto 3.2

• Planned for Qt 6.1
> QNX & INTEGRITY

• Technology Preview with Qt 6.1
• Full support planned for Qt 6.2

20 January 2021 © The Qt Company54

Release roadmap

 Qt 6.0 December 2020

 Qt 6.1 End of April 2021

 Qt 6.2 LTS End of September 2021

20 January 2021 © The Qt Company55

Outlook
 Porting the remaining Qt Add-ons to Qt 6

• Delivered through the package manager as they are ready
 Make most properties bindable
 Wider C++ API for Qt Quick and Qt Quick Controls
 Improvements to QML performance
 Improvements in native styling, accessibility and graphics

features

20 January 2021 © The Qt Company56

Want to Know More?

5720 January 2021 © The Qt Company57

Thank you!
info@qt.io
www.qt.io/contact-us

Lars Knoll, Qt Chief Architect, The Qt Company
Tuukka Turunen, SVP R&D, The Qt Company

mailto:info@qt.io
http://www.qt.io/contact-us

	Qt 6.0
		Qt 6 Timeline
	Qt 6 Development Timeline
	Package Manager – Additional Libraries for Qt 6
	Supported Essential and Add-on Modules in Qt 6
		Designer Tools
	Unified 2D and 3D Design Tool
	Cross Product-line Development
		Developer Tools
	Developer Tooling Fully Supporting Qt 6
	Constantly Improving CMake Support
	New Tools for C++ Development
		Qt 6
	Goals
	Core Values
	Focus on cleaning up our code base and architecture, not on new features
	Compatibility
		What’s new in 6.0?
	Require C++17
	Containers
	QList and QVector
	QMap and QHash
	Performance: Hash<int64_t, int64_t>�
	Unicode & String classes
	String classes
	Regular expressions
	Text conversions
	Properties and bindings
	Slide Number 29
	Goals
	Slide Number 31
	Slide Number 32
	Slide Number 33
	QObject complicates the picture
	Solution
	Slide Number 36
	QMetatype and QVariant
	struct QMetaTypeInterface { uint size, alignment; const char *name; ConstructFn construct; DestructFn destruct;� EqualsFn equals; ...};��class QMetaType {� QMetaTypeInterface *iface;�public:� const char *name() const { return iface->name; }� void construct(void *where) { iface->construct(where); }�};
	Improvements to moc
	Rewritten Concurrent
	Slide Number 41
	Further improvements
	Unified Pointer events
	Graphics
	Graphics Architecture
	Rendering Hardware Interface
	Qt Shader Tools
	Qt 6 uses the native graphics API of each operating system
	Quick 3D
	Desktop style for Quick Controls
	Desktop style for Quick Controls
	CMake
	Supported platforms
	Roadmap for other platforms
	Release roadmap
	Outlook
	Want to Know More?
	Thank you!��info@qt.io�www.qt.io/contact-us

